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Partial Coordination Numbers 
and Flory-Huggins Equation of 
Binary Hard Sphere Systems with 
Unequal Hard Sphere Diameters 
H. RUPPERSBERG 
FB lngenieurwissenschaften, Universitat des Saarlandes, 0-6600 Saarbrucken. FRG 

(Received 30 July 1981) 

Partial radial distribution functions of binary hard sphere systems with strong size 
difference between the constituting atoms are calculated starting from the Percus-Yevick 
equation. Partial coordination numbers of nearest neighbours are defined. Empirical 
relations are found which give partial coordination numbers of an accuracy better than 
1 % as a function of packing fraction (0.2 5 t f  I OS), size difference (u2/u1 5 1.44) and 
composition. Introduction of pairwise interactions between nearest neighbours yields for 
the enthalpy of mixing approximately the same composition dependence as given by the 
Flory-Huggins equation, and explains why the numerical value of the “interchange 
energy” depends on the choice of indexing the constituents. 

KEY WORDS: Partial coordination numbers. Flory-Huggins equation, interchange 
energy. 

1 INTRODUCTION 

In many liquid metals and alloys there is no directional covalent 
bonding between the atoms, and the structure is compact and relatively 
simple. A good starting point for its description is the structure of a 
random dense packing of hard spheres. The radial distribution func- 
tions describing this structure may be calculated from appropriate 
equations, and relations exist for a more or less precise determination of 
thermodynamic properties. 

We call N = N ,  + N ,  the total number of particles in a binary alloy. 
The number of i-j pairs (i,j = 1,2) is given by x i N  . Z i j  with x i  = NJN. 
The partial coordination numbers Z i j  corresponds to the number of j 
particles surrounding an i atom. There are $x iNZi i  i-i pairs. The 
concept of coordination numbers was adopted from the crystalline state 
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2 H. RUPPERSBERG 

by many authors though its signification is somewhat problematical for 
liquids. This concept allows one to formulate the following expression 
for AH, if composition independent pairwise interactions wij between 
the particles are postulated: 

AH = -{tx,Z,,w11 + x1z12w1, + 3 x z z 2 z w z z 1  
+ {+x lz~wl ,  + ~X,Z~W,,} (1) 

AH corresponds to the difference between the enthalpy of the solution 
and the enthalpy of the pure components. Zp is the total coordination 
number in pure i. Total coordination numbers of the alloy are given by 
Zi = Zii + Zij and we call Z = xlZl + x2Zz the mean coordination 
number. 

In the case of substitutional alloys of equally large atoms we have 
Z, = Z, = Zp = Z. For disordered substitutional solutions Zij = 
xj . Z and Eq. (1) becomes: 

(2) 
w (or Zw) is called interchange energy. Equation (2) is based on the 
assumption that the substitutional solution remains disordered though 
the interaction between unlike neighbours is different from the 
mean interaction between like pairs. In reality finite interchange energy 
will create chemical ordering and the actual partial coordination 
numbers Zij will be larger or smaller than Zij = xjZ, the partial 
coordination number of the disordered sample. Hafner, Pasture1 and 
Hicter’ called “ordering enthalpy,” AHord, the difference between the 
enthalpy of the ordered and the disordered state at a given composition. 
In the present, simplified case AH,,, is given by: 

AH = - X ~ X ~ Z ( W , ,  - +wll - $ w Z 2 )  = -x,x,ZW 

= -xl(zlZ - X2z)w12 - ixl(zll - xlz)wll 
1 

- zxz(Z22 - XZZ)WZZ 
= XlXZZ(W1, - f W l l  - fwzz)(l - Z1,/XZZ) = x,x,zw. a (3) 

where a = 1 - Zl2/(x2Z) is the Warren-Cowley short range order 
parameter, wij and w are free to change with composition. The authors 
obtained the total AH by adding an electronic gas contribution to 
AHord. It seems interesting to note that AH,,, given in Eq. (3) will 
always be negative, irrespective of whether the system is of the 
segregating (a > 0, w < 0) or of the compound forming type (a < 0, 

The situation becomes much more complicated if the hard spheres 
differ in size. The total coordination numbers Z, and Z, will be 
different and composition dependent. The Zij of a disordered solution 
are no longer given by xjZi. This is why neither the Warren-Cowley 

w > 0). 
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BINARY HARD SPHERES 3 

short-range parameter a nor the corresponding parameter for non- 
substitutional alloys of equal size atoms which were introduced by 
Cargill and Spaepen3 are helpful for describing such systems. A relation 
frequently used for calculating AF, the free energy of mixing, is the 
Flory-Huggins (FH) equation. Examples for its application were 
recently given by Ruppersberg4: 

(4) 
Oi is the idealized volume fraction: Oi = xi Vp/(x, Vy + x2 V;) ,  Vp being 
the molar volume of the pure component i. The larger atoms are 
labelled “2.” AF of noninteracting hard-sphere systems is given by the 
Mansoori5 equation: 

(5) 

AF,, = RT(x ,  In Ol + x2 In Oz) - x,CDzw,, 

AFHS = - T(AS,,, + S ,  + AS,, + S,) 

AS,,, represents the ideal gas entropy, S ,  is the ideal entropy of mixing. 
The terms AS,, and So are the packing and misfit contributions, 
respectively. It has been observed by Visser et aL6 and by Neale and 
Cusack7 that the first term on the right side of Eq. (4) corresponds to 
AS,,, + S, of Eq. (5) if Oi is calculated with the real molar volume 
instead of x l V y  + x2Vi. Recently4 the enthalpy term -xl@2wFH of 
Eq. (4) is added to Eq. (5) for describing systems of interacting hard 
spheres. In this paper simple relations for Z and Zij will be deduced, 
starting from the empirical observation4 that Zii/Oi varies almost 
linearly with Oj ,  and the signification of the FH enthalpy term will be 
explained. A subsequent paper will deal with chemical order. 

2 HARD SPHERE FORMALISM AND 
COORDINATION NUMBERS 

The variables chosen for calculating the structure data are the packing 
fraction q (0.2 I q I0 .5) ,  the hard sphere diameter ci ((T~/(T, I 1.442) 
and CD. We discuss first the results obtained for rj = 0.45. This packing 
fraction and a2/al = 1.442 are close to the values inserted by 
Ruppersberg4 for calculating HS-structure data for comparison with 
neutron diffraction data of liquid Li/Ba alloys. 

The partial structure factors were calculated using the Percus-Yevick 
approximation. A corresponding computer program is given in Wase- 
da’s book.* Fourier transformation4 yields the partial radial distribu- 
tion functions 4nr2pi,(r) which give the probability per unit volume of 
finding the centre of a j particle at distance r from the centre of an i 
sphere. The curves obtained in this way agree almost perfectly with 
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4 H. RUPPERSBERG 

Monte Carlo  result^.^ 47cr2pi,(r)/xj curves for x, = 0.2,0.5,0.8 and for 
the pure components are given in Figure 1. For substitutional alloys 
these curves would all be identical. In the present case they are 
indistinguishable only for a given composition at large r, and very 
different for small distances. The atomic density is much smaller in the 
vicinity of the smaller particles. Because nearest neighbours are not 
separated from the rest of the curves in Figure 1, there is no unique 
definition for the coordination numbers. We will use the following 
relation: 

Z i j  = 47c r Z p i j ( r )  dr ( 6 )  IRf’ 
with R,, = 0.72(ai + aj). These distances which are indicated by vertical 
bars in Figure 1 correspond to the position of the minimum following 
the first peak in the curves of the pure components given in Figure 1 
and they are close to the position of the minimum for the corresponding 

3 1 RI2 2 3 2 R2, 3 r - 
Figure 1 Radial distribution functions of the pure components (xl = 1 ,  x2 = 1 )  and 
relative partial radial distribution functions for x 1  = 0.8, 0.5 and 0.2. The vertical bars 
indicate the values of Rij, limiting the first coordination shells. 
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BINARY HARD SPHERES 5 

partial curves of the alloys. The coordination numbers may directly be 
obtained from the Faber Ziman partial structure factors ai,{q). Using 
Si i (q)  = xiaii(q) + x j  and Si j (q)  = xjaij(q) + x i  one obtains: 

zij = 471xjp0 . R; + ( 2 / 4  J ((sij - l)/q) sin(q . R , ~ )  dq 
(7) 

In Figure 2 are plotted as circles values of Z = x,(Zll + Zlz) + 
xZ(Z2, + Zzi) which is the mean coordination number and corre- 
sponds to twice the total number of nearest neighbour pairs per 
particle. Z was calculated for different values of 1 I o,/a, I 1.442 and 
we observed that its variation with composition and size difference for a 
given packing fraction is very precisely given by 

z = zo - u x l a q v ;  - v:>/v: (8) 

Figure 2 Left: Mean coordination number 2 obtained from Eq. (7) (circles) and from 
Eq. (8) (full line) for q = 0.45 and uJul = 1.442. Relative partial coordination number 
Zll/Ql (upper part) and Z2z/Q2 (lower part) obtained from Eq. (7) (0: u,/u, = 1.442; v: a,/ul = 1.2; m: uz/ul = 1.1)  and from Eq. (9) (full lines). q was 0.45. Right: Relative 
partial coordination numbers Z12/Q2 obtained from Eq. (7) (0: U,/U, = 1.442; A: 
uz/ul = 1.3; v: u2/u1 = 1.2, m: u2/u1 = 1.1) and from Eq. (10) (full lines). q was 0.45. 
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6 H. RUPPERSBERG 

Zo is the coordination number of the pure components. Zo = 1 1  .OO and 
a = 0.53 for q = 0.45. The maximum relative deviation between Z 
calculated using Eq. (7) and Eq. (8), respectively (circles and full drawn 
curve in Figure 2), was found to be smaller than 0.2%. The maximum 
relative deviation from Zo amounts to about -4% and - 1 % for 
az/al = 1.442 and 1.2, respectively. Z = Zo will be a good approxima- 
tion for not too large size difference. 

The points Zii/Qi calculated from Eq. (7) and given in Figure 2 for 
three different a2/a1 values are seen to vary close to linear with mi. The 
deviation from linearity is strongest for Z2,/a2 at small x, and large 
a2/al. The coordination numbers divided by the volume fractions may 
be written: 

Zl1/Ol = zo + b, . 0,. ( 1  - al/a,) 

Z,,/Q,, = zo - b, . o1 . ( 1  - a1/a2) (9) 

For q = 0.45 we obtained Zo = 11.0, b ,  = 6.5 and b,  = 7.4. For the 
composition range investigated which was 0.999 2 xi 2 0.001 the maxi- 
mum relative deviation between Eqs (7) and (9) (points and full drawn 
curves) is largest for Z,,/@, at x, = 0 where it amounts to less than 1 %. 
It is much smaller for Zl,/Ql.  For az/al = 1.442 Zii/mi changes by 
about 20% on varying ai from 1 to 0. For most alloy systems the size 
effect will be smaller and frequently Zii = QiZo might be a sufficiently 
accurate approximation. It seems interesting to note that one obtains a 
relation of this type for a hypothetical system in which the atoms are 
completely disordered beyond the HS-diameters ai, i.e. for which 
pii(r > ai) = x i .  N / V  = x i .  p o ,  namely Zii/mi = ~ ~ [ ( R , J o ~ ) ~  - 11, inde- 
pendent from composition and the special choice of Rii.  The variation 
of Zii/Oi with Oi is due to the special form of pi i (r )  and, in fact, bi in 
Eq. (9) and even the sign of bi depends on the choice of Ri j  as will be 
shown later. 

For substitutional alloys one has ZiJx,Zo = 1. The same quantity 
derived from Eq. (9), and calculated for the limiting case xi -+ 0, which 
corresponds to the maximum deviation, becomes Zii/xiZo = 
( ~ ~ / o ~ ) ~ ( l  k bi(l - al/az)/ZO) yielding 0.4 and 2.4 for the small (a, = 1 )  
and the large (a, = 1.442) spheres, respectively. For only 10% size 
difference one still obtains - 20 and + 25 % deviation from the value of 
substitutional alloys. 

Inserting Eqs (8) and (9) into Z = x lZl l  + x2Z,, + 2x1Z1, yields 

Z,,/Q, = +ZO(l + v:/v;> - f u ( V ; / V :  - 1) 

- 3@l(bl - b,x,/x,) (1 - ~ l / ~ , )  (10) 
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BINARY HARD SPHERES 7 

Z , ,  may be obtained from Z21/01 = ( Z 1 2 / 0 2 ) .  (V; /Vy) .  Plots accord- 
ing to Eq. (10) are given in Figure 2 as full drawn curves and are 
compared with individual points obtained from Eq. (7). For the 
a,/a,-range investigated the deviation is less than 1 %. 

We will now discuss the magnitude of the three terms on the right 
hand side of Eq. (10). For az/al = 1.442, the first two terms are 
equal to 7.33 and -0.53, respectively. The third term vanishes for 
blxl = b,x2 and is equal to - 1.00 and +0.38 for x 1  = 1 and x 1  = 0, 
respectively. For only ten percent size difference the corresponding 
numbers in the same order are 9.63, -0.09, -0.29 and 0.25. This 
demonstrates that for small size differences Z , ,  = $Zo(l + Vy/V; )  . O, 
might be a sufficiently accurate approximation. Composition indepen- 
dent Z12/02 is also obtained for the above mentioned case pi,{r > ai) = 
xj p o  which yields Zij/(Dj = Zo(l + 0 ~ / 0 ; ) ~ / 8 .  

For substitutional alloys Z i j / ( x j Z )  = 1. In the present case we find 
values of 0.65 and 1.57 for x1 = 0 and 1, respectively, and inserting 1.44 
for a2/a1. With only 10% size difference we still obtain maximum 
deviations of 11 %. One sees that the Warren-Cowley SRO Parameter 
u = 1 - Zij/(xjZ) loses its meaning if the size difference becomes too 
important. 

The Eqs (8) and (9) are approximately valid in the whole q-range of 
dense liquids. Z 2 , / 0 2  becomes stronger curved for larger q. With 
decreasing q, the difference between b, and b, becomes more pro- 
nounced. At q = 0.5 these two quantities are almost identical. Zo,  b ,  
and b ,  increase monotonically with increasing q. a has a maximum 
value at about q = 0.43. The following empirical equations allow the 
calculation of the different coordination numbers 

Zo = 16.62. + 13.75.  q2 + 60.99 * q3 - 117.2 * q4 

z = zo - X1@2(1.4q - 64.41')(03 - a:)/a: 

Z ,  = QIZo + OlO2 . 135q3.'(a2 - a1)/a2 

2 1 2  = (2 - XlZl, - XZZ,,)/(2 * X I >  

(1 1)  
2 2 2  = @2Z0 - @1@2 * 68q2.'(a, - al)/az 

Rij was always 0.72 . (ai + aj). In the range 0.2 I q I 0.5 and a2/ol I 
1.442 the results deviate by more than 1 % from Eq. (6) only for Z,,/O, 
and Z1,/Q2 if simultaneously q is large and x ,  is small. 

We also studied the influence of R i j .  For 1 = 0.45 and Rij/(ai + aj) = 
0.55 and 0.65 we observed the same qualitative behaviour as described 
by Eqs(8) and (9). With the results obtained for 0.65 given in 
parenthesis, the values of Zo, a, b, and b,  are: 3.85 (8.8), 0.30 ( O S ) ,  - 1.0 
(2.6) and -1.0 (4.2), respectively. The sign of the slope of the ZiJQi 
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8 H. RUPPERSBERG 

versus Qi curves has changed for Rij/(ai + aj) = 0.55 with respect to the 
other cases investigated. 

3 INTERACTION TERM OF THE FLORY-HUGGINS 
EQUATION AND GENERAL CONCLUSIONS 

We postulate composition independent interactions wij between the 
nearest neighbour pairs defined according to Eq. (6). The enthalpy of 
mixing per particles is then obtained by inserting into Eq. (1) the Zo 
and Z i j  values of Eqs (8) to (10) or of the Eq. (1 1): 

A H  = -X1@2Zo[W12 - 3 ~ 1 1  - 3 ~ 2 2  + )(1 - V:/V;)(w22 - w ~ Z ) ]  

- 3@l%CX,blWll + x2bzw22 - ( X l h  + X 2 b 2 ) w l z l A a / ~ ,  
+ + x 1 0 2 a .  w12AV/Vy (12) 

The first line contains the first terms on the righthand side of Eqs (8) to 
(10) which were shown to be good first approximations for not too 
large size difference. Inserting w for w 1 2  - w11/2 - wZ2/2 this first line 
becomes: 

AH1 = -X1@2Zo[W + (1  - V:/V:)(W22 - W12)I 

= -X2@,Z0[W + ( 1  - v;/vy)(wll  - WlZ)]  (13) 
The terms in brackets are independent from composition and A H l  
should correspond to the interaction term - x 1 O z w F H  of the Flory- 
Huggins Eq. (4). For wFH two different values are obtained depending 
on the choice of indexing the particles. Equation (13) gives a satisfac- 
tory explanation of this fact. 

For substitutional alloys we have V(: = V ; ,  the coefficients a, b,  and 
b, vanish and Eq. (12) reduces to Eq. (2)  as it should. For w1 = wZ2 = 
w12 only the first and the second line of Eq. (12) vanish and we are in 
trouble finding a finite enthalpy of mixing: A H 3  = W ~ ~ ~ X ~ @ ~ A V / ( ~ V ~ ) .  
The reason is that the total number of nearest neighbour pairs is 
reduced if the packing fraction is kept constant on mixing the pure 
components. AH,  vanishes if q is changed on mixing to q’ such that 
Zo(q’) - u(q’)xl@2AV/Vy = Zo(q); which yields a negative excess vol- 
ume. 

The relatively simple description of the mean and the partial coordin- 
ation numbers which is presented in this paper seems to be useful for 
better understanding the structure of disordered systems consisting of 
unequal hard spheres, and it offers perhaps a chance finding a formal- 
ism which allows to describe chemical order in this complex case. We 
doubt however that our partial coordination numbers are of immediate 
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BINARY HARD SPHERES 9 

use for discussing metallic systems. No doubt that the most important 
part of the ordering enthalpy, Eq. (3), may be attributed to nearest 
neighbour  interaction^.^ But this interaction is certainly not propor- 
tional to the partial coordination numbers discussed in this paper. It 
depends on the special shape of the ordering potentials, which them- 
selves correspond to a very simplified modelling of the much more 
complex “reality” deduced from fundamental theories.* It seems plausi- 
ble that the “density at contact”* or the number of neighbours in a 
given distance interval beyond oi (not proportional to oi + oj) are the 
quantities to be chosen for calculating AHord. Once it is clear which 
quantities are needed, the corresponding analytical expressions for their 
evaluation may be obtained in the same way as for the partial 
coordination numbers discussed in this paper. 
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